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Active turbulent advection is considered in the context of magnetohydrodynamics. In this case, an auxiliary
passive field bears no apparent connection to the active field. The scaling properties of the two fields are
different. In the framework of a shell model, we show that the two-point structure function of the passive field
has a unique zero mode, characterizing the scaling of this field only. In other words, the existence of statistical
invariants for the decaying passive field carries no information on the scaling properties of the active field.
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In the context of turbulent advection, the understanding of
fluid turbulence has greatly improved in the recent years[1].
The anomalous scaling has been shown to be universal and
connected to the existence of statistical integrals of motion
[2]. In Ref. [3], it was shown that the statistically conserved
structures of decaying passive turbulence dominate the sta-
tistics of forced turbulence, thus offering a rather general
framework for understanding the universality of anomalous
scaling in forced turbulence.

Let f be a decaying field transported by a stationary tur-
bulent flow. The linearity of the advection implies the fol-
lowing relation for the correlation functions:

kfsrW1,td ¯ fsrWN,tdl =E dqWIPsNdsrWI,tuqWI,t0d

3kfsqW1,t0d ¯ fsqWN,t0dl, s1d

where we used the compact notationrWI; rW1, . . . ,rWN to denote
a collection ofN position vectors. Equation(1) tells us there
exists a linear operatorPsNd that propagates thenth order
correlation function from timet0 to time t. Without fresh
input, that is, in the absence of forcing, the correlation func-
tions of f decay due to dissipative effects. Nevertheless, as
conjectured in Ref.[3], there exist special functionsZsNd that
are left eigenfunctions of eigenvalue 1 of the operatorPsNd,

ZsNdsrWId =E dqWIPsNdsqWI,turWI,t0dZsNdsqWId, s2d

such that

I sNdstd =E drWIZ
sNdsrWIdkfsqW1,td ¯ fsqWN,tdl s3d

is preserved in time.I sNd and ZsNd are respectively called a
statistical integral of motion and a statistically preserved
structure of orderN, also referred to as zero modes[15].

Now, consider the same passive advection problem with
an external forcing, such that the system reaches a stationary
state. Define the correlation function off in that stationary
state to be

FsNdsrWId = kfsrW1,td ¯ fsrWN,tdl f , s4d

where the symbolk·l f denotes averaging over the statistical
stationary state. It was conjectured in Ref.[3], that the
anomalous part ofFsNdsrWId is dominated by the leading zero
modes of the decaying problem, i.e.,ZsNd,FsNd. The conjec-
ture was verified in the context of a shell model for passive
scalar advection.

In subsequent studies, it was discovered that the existence
of statistical invariants of the motion for passive turbulence
may help us understand the statistics of active turbulence, a
case where the advected quantity affects the dynamics of the
advecting field. In Refs.[4–6], the case of thermal convec-
tion in the Boussinesq approximation was studied. There it
was shown that the scaling of the active field is also domi-
nated by the statistically preserved structures of auxiliary
passive fields. It is yet unclear how general this connection
between the statistics of active and auxiliary passive fields is.
The case of two-dimensional magnetohydrodynamics is re-
vealing. Indeed, in this case active and passive fields have
very different scaling behaviors. As shown in Ref.[7], the
transported fields cascade in different directions. It is there-
fore unexpected that the statistics of the auxiliary passive
field holds information on the statistics of the active field.
The two fields have different scaling properties. In Ref.[6],
despite this difference, the claim was made that the analogy
does hold in the sense that there exist subleading zero modes
of the propagator of the correlation functions of the auxiliary
passive field with the scaling of the correlation functions of
the active field.

The purpose of this paper is to show that this is actually
not the case. To this end, we will limit our investigation to
the case of the second order structure functions of a shell
model of two-dimensional magnetohydrodynamic turbu-
lence. The case of the second order structure function is the
simplest one. Because of the absence of geometry, its scaling
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is nonanomalous[2,8,9], which in the language of zero
modes implies nondegeneracy, that is, there is a unique con-
served structure associated to the two-point statistical invari-
ant. The same holds in the language of shell models, where
the only two point function of a passive scalar fieldun asso-
ciated to the scalekn is kuunu2l, in contrast to higher order
structure functions, e. g., the fourth order for which we have
contributions fromkuunu4l, kuun−1u2uun+1u2l, etc. Using methods
similar to those used in Ref.[10], we will construct the op-
erator propagating the second order structure functions, and
will demonstrate that the auxiliary passive field has the same
statistical integral of motion as other shell models of passive
advection. It will be inferred that there is no subleading zero-
mode with the scaling of the(active) magnetic field.

In analogy to other models[11–13], the following two
sets of equations generalize the usual Sabra shell model[14]
for the turbulent velocity field to magnetohydrodynamic tur-
bulence(we omit dissipative terms):

dun

dt
= ifkn+1sun+1

* un+2 − bn+1
* bn+2d

− se + 1dknsun−1
* un+1 − bn−1

* bn+1d

− ekn−1sun−2un−1 − bn−2bn−1dg + fn, s5d

dbn

dt
= if− se + ddkn+1sun+1

* bn+2 − bn+1
* un+2d

+ dknsun−1
* bn+1 − bn−1

* un+1d

+ sd − 1dkn−1sun−2bn−1 − bn−2un−1dg + fn8. s6d

Here un (the velocity field) and bn (the magnetic field) are
complex variables defined on a discrete set of shells indexed
by the integern whose associated wavenumberkn=k0ln,
l.1 (hereafter taken to bel=2). fn and fn8 are two forcing
terms which are taken to be stochastic white noises with
identical statistics and concentrated on a limited number of
neighboring shells(n=5,6,7 in ournumerical experiments).
The model’s parameterse and d are conveniently param-
etrized in the following way. The three-dimensional(3-D)
model for whiche,0 readssa.0d

e = − l−a,

d = s1 + lad−1 s3D modeld. s7d

The two-dimensional problem on the other hand hase.0
and reads

e = l−a,

d = − sla − 1d−1 s2D modeld. s8d

Correspondingly, we have the following quadratic dynamical
invariants(i.e., time-invariant in the limit of zero viscosity
and zero external forcing),

E = o
n

suunu2 + ubnu2d stotal energyd, s9d

K = o
n

Resun
*bnd scross helicityd, s10d

H = o
n

sgnsddnkn
−aubnu2 smagnetic helicityd. s11d

Thus, in both two- and three-dimensional models, Eqs.(5)
and (6) have one single free parameter,a.0. The two- and
three-dimensional models actually have very different dy-
namical behaviors, see Ref.[11]. Only the two-dimensional
model can sustain a stationary state and we will limit our-
selves to this case. As dimensional analysis shows[6], the
conservation of the first two invariants implies thatun andbn
must both have Kolmogorov scalings,kuunu2l ,kubnu2l,kn

−2/3,
for which the corresponding fluxes are constant. This is in-
deed what has been measured for similar models[11], where
both fields appear to display the same anomalies. Further, as
shown in Ref.[6], the conservation of the third invariant
allows for another scaling,kubnu2l,kn

a−2/3, for which the
magnetic helicity flux is constant. But since this scaling is
incompatible with the conservation of the two other invari-
ants, it is not relevant to the statistics of the magnetic field.

However, if one considers a passive auxiliary field obey-
ing an equation identical to Eq.(6) for the two-dimensional
case,

dan

dt
= ifl−asla − 1d−1kn+1sun+1

* an+2 − an+1
* un+2d

− sla − 1d−1knsun−1
* an+1 − an−1

* un+1d

− lasla − 1d−1kn−1sun−2an−1 − an−2un−1dg, s12d

the only relevant invariant is the equivalent of the magnetic
helicity Eq.(11), to which a constant flux is associated. Thus
the dimensional scalingkuanu2l,kn

a−2/3 is expected to be ob-
served. And that is indeed what was found in Ref.[6].

Notice though that the linearity of Eq.(12) allows for the
substitutioncn=l−an/2an. With this new variable, Eq.(12)
takes the form

dcn

dt
= ifAsk+1un+1

* cn+2 + kn−1cn−2un−1d + Bskn+1cn+1
* un+2

− kncn−1
* un+1d + Csknun−1

* cn+1 + kn−1un−2cn−1dg,

s13d

which describes the advection of a scalar for which the qua-
dratic invariant isonucnu2, which is similar to the shell model
with only nearest neighbor interaction considered in Refs.
[3,10]. The coefficients in Eq.(12) correspond to the choice
A=sla−1d−1, B=−l−a/2sla−1d−1, and C=−la/2sla−1d−1.
This shows that as far as shell models are concerned, the
difference between a passively advected vector and passively
advected scalar is just a numerical factor. Henceforth we do
not make a distinction between the two and use the name
“passive field” for both.

Consider now the equivalent of Eq.(1) for the propaga-
tion of the second order structure functionskuunu2l in the
decaying problem—including dissipative terms on the right-
hand side of Eq.(13). Following notations similar to those
used in Ref.[10], we can write the equation of motion forcn
under the form
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dcn

dt
= Ln,mcm, s14d

with the solution

cnstd = T+HexpFE
t0

t

dsLssdGJ
n,m

cmst0d,

; Rn,mstut0dcmst0d s15d

(T+ denotes the time ordering operator). Letting

Pn,m
s2d stut0d ; kRn,mstut0dRn,m

* stut0dl, s16d

the propagation of second order structure functions obeys the
following equation:

kucnstdu2l = o
m

Pn,m
s2d stut0dkucmst0du2l. s17d

The form of the operatorPs2d was discussed in Ref.[10]. It is
a matrix whose elements can be obtained by propagating an
initial condition concentrated at a given shell. Similar con-
siderations hold for the models considered here. In Fig. 1 we
show these elements for successive times, starting from an
initial condition at shell 20. The model we used is Eq.(13)
for the parameters corresponding to Eq.(12) and advected by
the magnetohydrodynamic fields Eqs.(5) and (6). The pa-
rameters of the simulation are given in the figure caption.

In analogy to Ref.[3], the statistical invariantI s2d for the
passive scalar field is

I s2dstd = o
n

Zn
s2dkucnstdu2l, s18d

whereZn
s2d is a left eigenfunction of the operatorPs2d, with

the scaling of the second order structure function of the
forced problem. The invariance ofI s2d is most easily demon-
strated by re-scaling the decaying second order objects ac-
cording to Eq.(18). The curves indeed collapse if the ordi-
nate is shifted with the appropriate time dependence. This is
shown in Fig. 2 and is analogous to Fig. 4 in Ref.[10]. Thus
in the language of the passive magnetohydrodynamic model
Eq. (12), we have that

o
n

kuanu2l f/kn
akuanu2stdl/kn

a s19d

is a statistical integral of motion. To claim that the scaling of
the magnetic field structure functionkubnu2l is a subleading
zero mode ofPs2d is equivalent to claiming that

o
n

kubnu2l/kn
akuanu2stdl/kn

a s20d

is a statistical integral of motion. Clearly, in view of Fig. 2
this cannot be the case and the collapse will not occur should
the scaling exponent ofZs2d be replaced by another one[16].
In this line of thought, it is perhaps worthwhile pointing out
that the collapse as seen in Fig. 2 would not be possible
should there be zero modes with distinct scaling exponents.
Indeed, as seen from Eq.(18), the collapse occurs provided
kucnstdu2l “falls” precisely on the right eigenmode with a
scaling identical toZn

s2d.
To conclude, we emphasize that the linearity of the pas-

sive advection models assigns them to a narrow class of
equivalence. The passive magnetohydrodynamic model is in
fact equivalent to a scalar advection model for which the

FIG. 1. The elements ofPn,20
s2d for the scalar field Eq.(13) ad-

vected by the magnetohydrodynamic field Eqs.(5) and (6), where
the parameter was chosen to bea=2. The times displayed are .4,
.55, .7, .85, and 1, respectively(measured in the natural time units
of the model). The horizontal axis corresponds to the shell numbers.
The units on the vertical scale are arbitrary. The simulation was
done using a total of 35 shells, with the first shell wave number
k0=1/16 and ashell spacing ofl=2. All the fields were dissipated
on the small scales with a termnkn

2, with n=10−12. The advecting
fields were forced on shells 5–7 with white delta correlated noise of
amplitudes 1/Î2, 1/2Î2, and 1/4, respectively. Moreover, the
phase of the forcing on shell 7 was taken to be equal to the sum of
the phases of the forcings on shells 5 and 6.

FIG. 2. The curves of Fig. 1 collapsed according to Eq.(18).
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statistical invariants have already been investigated in some
detail [10]. In magnetohydrodynamics, active and passive
fields have different scaling properties. The arguments that
were used in the framework of thermal convection to account
for the anomalous scaling of the active field in terms of a
passive auxiliary one do not carry over to magnetohydrody-
namics. The claim that one can nevertheless account for the
scaling of the(active) magnetic field by considering sublead-
ing zeromodes of the operators propagating the decaying cor-
relation functions was proven wrong. In view of the form of
the second order propagator, it is clear that there is no zero
mode but the one whose scaling is that of the passive field.
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